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1. INTRODUCTION 

The step-heating method is a promising photothermal 
technique for measurement of thermal diffusivity of 
solids [1, 2]. In this method the thermal diffusivity of 
a material is measured by subjecting the front face of 
a small, usually disk-shaped sample to a constant heat 
flux condition. From the resultant temperature rise at 
the opposite (rear) face of the sample the thermal 
diffusivity can be obtained. The step-heating method 
can be viewed as art extension of the well known flash 
method, based on measurement and analyzing the 
temperature response at the rear face after application 
of an instantaneous heat pulse [3]. Although the flash 
technique was primarily proposed for measurement 
of homogeneous and isotropic materials, it has also 
been successfully applied for measurement of het- 
erogeneous and anisotropic materials including 
layered, dispersed and fiber-reinforced composites. 
However, extensions of its use for some types of insu- 
lators and explosive materials is limited due to the 
relatively large front face temperature rise caused by 
the heat pulse. There are also difficulties involved in 
measuring the thermal diffusivity of large-grained het- 
erogeneous materials, especially oriented fiber- 
reinforced composites, where the scale of the micro- 
structure is comparable with the sample thicknesses 
usually used [4]. Substituting step-heating for the laser 
pulse tends to overcome these difficulties, the possi- 
bility of using samples of relatively large dimensions 
in comparison to those used in the flash method allows 
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the extension to cases where the material can be con- 
sidered to behave as a homogeneous medium [5]. An- 
other advantage of the step-heating method is the 
relatively low intensity of the imposed heat flux in 
comparison with that necessary for the pulse-heating 
techniques. The sample is therefore less likely to exhi- 
bit a phase transition or decompose as a result of a 
sudden large temperature increase at the front face. 

2. MATHEMATICAL BACKGROUND OF THE 
STEP-HEATING METHOD 

The ideal model is based on the behavior of a homo- 
geneous, thermally insulated, infinite slab with uni- 
form and constant thermal properties and density, 
subjected to a constant heat flux, uniformly applied 
since the time origin, over its front face (x = 0). The 
transient temperature T = T(e, t) at the rear face 
(x = e) of the sample can be obtained by solving the 
one-dimensional heat conduction equation 

1 OT 02T 
- O < ~ x < ~ e ;  t>0 (1) 

a ~3t Ox 2 ' 

with the initial and boundary conditions 

T(x, 0) = 0, O<~x<~e  (2) 

OT(0, t) q 
Ox k '  t > 0 (3) 

T(e, t) 
~ - 0 ,  t > 0  (4) 

where a is the thermal diffusivity, k is the thermal 
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~ NOMENCLATURE 

a thermal diffusivity 
a* estimated value of thermal diffusivity 
B heat flux parameter 

CP specific heat 
e sample thickness 
ho, h,, h, heat transfer coefficients 
H, Ho, H,, H,, H, Biot numbers 
H* estimated Biot number 
k thermal conductivity 
0 computational complexity 

4 heat flux per unit area 

:fi 
sample radius 
normalized sensitivity coefficient 

t time 
T temperature. 

Greek symbols 
e function 

P density. 

conductivity and q is the heat flux per unit area. The 
general expression for the sample temperature as a 
function of position x and time t is [6] 

4 
T(x, t) = pee 

e2 ex x2 
t+ 3a - a + 2a 

I- 

-5 e 
(.,,)expk3at~ - (5) 

cos _ 
“=I n2n2 ( > yra 

The temperature T(t) = T(e, t) at the rear face (x = e) 
can be written in the form 

T(e,t) =$ t-2 

I 

where p is the density and c is the specific heat. 
Use of this simple adiabatic model is limited due to 

the difficulty of creating the ideal conditions con- 
sidered here. In a real experiment heat transfer 
between the sample and its environment is often 
unavoidable. Although one can reduce heat losses by 
using radiation shields, vacuum chambers etc., in 
some cases (high temperatures, poorly thermal con- 
ductive materials) it is necessary to take heat exchange 
into consideration in the working equation. 

Let us consider a disk-shaped sample with thickness 
e and radius rs (Fig. 1). If we take into account heat 
losses from the sample governed by Biot numbers 
related to each face Ho = &e/k, H, = h,e/k and 

q 
.> 

h0 

r 

I rs 

0 r 
Fig. 1. Model with heat losses. 

H, = h,r,/k (h,, h,, h, being the axial and radial heat 
transfer coefficients), the equation to be solved is 

1aT a2T a2T 1aT 

a at -z+q+;ar’ 

Oix<e; O<r<r,; t>O (7) 

with the boundary conditions 

T(x,r,O)=O, O<x<e; O<r<r, (8) 

a V-4 r, 4 
ax - - z + : T(0, r, t), t>o (9) 

a T(e, r, 0 p= 
ax 

- $ T(e, r, t), t>o (IO) 

aT(x, rs, t) 

ar 
= -:T(x,r,,t), t>o (11) 

where T = T(x, r, t) is the temperature at the point 
(x, r) and the time t. The general solution of this prob- 
lem can be obtained in the form [7] 
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1 - exp - + at 

× at,;  r:) 
: ,  (..~ w ~ 

where 

( x )  x,, 
A. Ho,H~, e =a .  cos U,e +~smtU.eJ ) 

(13) 

2 2 2 2u, (u, +H~) 
a n (u2, + Ho)(U,,2 z + H~) + (Ho + H¢)(uZ + HoH¢) 

~m ~ ,  = Jo(W~)(w~+n~r) 

(14) 

(15) 

and u, and Wm are the positive roots of the equations 

(u 2 - Hollo) tan(u) = (H0 + H,)u (16) 

w J, (w) = Hjo(W) (17) 

and J0 and J~ are Bessel functions of the first kind, 
order 0 and 1. The temperature T(t) = T(e, O, t) in the 
center of the rear face can be written as : 

q oo 

T(e, O, t) = ~ A, (Ho, H~, 1) 

( - (  u2" + W~]at~ 
× ~ Bm(Hr, O) 1-exp \e~ r2J ) (18) 

m =1 f U  2 W 2 ) 

 t,7 r: 

3. !DATA REDUCTION 

3.1. Use of the leaxt-squares fininy procedure 
Estimation of the thermal diffusivity can be per- 

formed by comparing the experimental data and the 
temperature vs time curve computed from equation 
(6) or (18). An iterative algorithm has appeared in the 
literature based on comparing the ratio of tem- 
peratures V = T(tO/T(t2) in various times tl and t2 for 
the ideal adiabatic: model (equation (6)). In order to 
increase the precision and to ensure the validity of the 
considered model, thermal diffusivity was proposed 
to be calculated at several different times [1, 2]. 

Use of computers in experimental data analysis 
allows one to utilize more powerful data reduction 
methods. The obje, ctive of this section is to show how 
a least-squares fitting can be used for data reduction 
in the step-heating method. 

Least-squares fitting can be applied, when we use 
the correct model and the experimental data are cor- 
rupted by a statistically uncorrelated error with the 

normal (Gaussian) distribution [8]. The least-squares 
method applied to step-heating experimental data is 
based on minimization of the merit function 

N 
R = ~ [T s -  T(tj)] 2 (19) 

j = l  

where Tj are the experimental data at the time points 
b, T(ti) are the corresponding temperatures calculated 
from the exact solution and N is the number of data 
points. We assume that the least-squares merit func- 
tion R has one unique minimum, which corresponds 
to the true values of the parameters being estimated. 

Let us consider the ideal adiabatic model : then we 
have two parameters to be estimated--thermal diffu- 
sivity a and the term B = q/pce. The necessary con- 
ditions for the extreme of R = R(a, B) are given by 

OR(a, B) O ~  - 0 (20) 

OR(a, B) 
0. (21) 

~3B 

A good deal of information is given by a normalized 
form of sensitivity coefficients, defined as 

0T 
S~ =/3 fffi (22) 

which may be viewed as a change 6T in the tem- 
perature T given by a small relative variation in the 
parameter/316T ~ Sa(6/3/fl)] [8, 9]. Figure 2 presents 
sensitivity coefficients Sa and SB vs time computed 
from equation (6). The calculations were done for 
the sample parameters a = 5.10 -5 m 2 s -1, thickness 
e = 30 mm and B = 0.01 K s -t. The shape of the 
sensitivity coefficients curves indicates that they are 
linearly independent. Thus a and B can be sim- 
ultaneously estimated. Performing the operators indi- 
cated in equations (20) and (21) and after some 
manipulations, we obtain a set of algebraic equations 
for a and B in the form 

TjOy(a) ~ ®j(a) O00J~(aa) 
j = l  j = l  

-- ~ T j ~  ~ Oy(a)=0 (23) 
j=  1 Ga j=  1 

N 

j = l  
B =  N (24) 

Z o~(a) 
j = l  

where Oj(a) is defined as 

e x P t - - t ~ - J a t  Q 
e 2 

Oj(a) = tj-- ~ --2_~ (- - , ,_  1)" 

t- -P 
(25) 
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Fig. 2. Sensitivity coefficient curves for the adiabatic model (equation (6)). 
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Fig. 3. Sensitivity coefficient curves for the model with heat losses (equation (18)). 

The problem of finding the optimal value of thermal 
diffusivity is due to the linear dependence of tem- 
perature rise T(e, t) on parameter B reduced to solving 
one algebraic equation (23). This equation has only 
one non-trivial root a*, which corresponds to the 
desired optimal value of the thermal diffusivity. To 
search for this value we used an iterative algorithm, 
based on the standard numerical bisection method. 
The main advantage of this algorithm is that the calcu- 
lation of thermal diffusivity is independent of know- 
ledge of the parameter B, which is then calculated 
from equation (24). 

Let us consider the model described by equation 
(18) if we assume the same heat losses from the front 
and rear surface, then we have only one axial Biot 
number Ha = H0 = He. Figure 3 presents the sen- 
sitivity coefficients sa, Ss, Sn, and Snr VS time for this 

two-dimensional (2D) model. The curves were com- 
puted for a = 5 x l 0  -5 m 2 s -j, B=0 .01  K s -j, 
Ha = 1.5, H~ = 0.1,e = 30mm and r, = 10mm. Simi- 
lar shapes of the sensitivity curves for axial and radial 
Biot numbers Ha and Hr indicate that these curves are 
close to being linearly dependent. This means that the 
parameters Ha and Hr cannot be determined inde- 
pendently in the least-squares fitting process, therefore 
we assume that there are equal axial and radial heat 
transfer coefficients ha = hr and radial and axial Biot 
numbers fulfil the condition 

Hr = Ha 5 .  (26) 
e 

Thus data reduction consists of estimation of three 
unknown parameters, a, B and Ha. From the 
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conditions for a minimum of the function 
R = R(a,B,H,), we obtain the following algebraic 
equations 

N N /~ O j  (( / ,  H a )  
TsOj(a, Ha) ~ Oj(a, H~) 

j=~ j=l 8a 

~ ~ ~®j(a,Ha) L - ~J ~a Z ®2(a, H a ) = 0  (27) 
j ~ l  .]=1 

~. TjOj(a, H~) ~ . . . . .  8Oj(a, Ha) 
j =  1 y= 1 ~j[a, 1"1a) ~-'na 

g'®j(a, Ha) N 
--j~ rj ~ j~= O~(a, Ha)=0  (28)  

N 
T~Oj(a,/-/a) 

j=l 
B -  N (29) 

E 1~2 (a, Ha) 
j = l  

with 

o , ( a , < )  = 1)  m(M. 0) 
n=l  m=l 

1 -exp  - + 7  atj 

>: (30) fu~ w ~) ..~ - m  

a~. 7 r 2 

Because of the linear dependence of the temperature 
rise on the heat-flux term parameter B for these 
models, the problem of finding the desired optimal 
value of thermal diffusivity a and Biot number Ha is 
reduced to solving the two algebraic equations (27) 
and (28). Both these equations have only the non- 
trivial roots a* and H*, which correspond to the 
desired optimal values of thermal diffusivity and Biot 
number. These va~lues can be found by an iterative 
root-finding technique. Parameter B is then calculated 
from equation (29). 

3.2. Levenberg-Marquardt method 
As the second method for data reduction we used 

the Levenberg-Marquardt (LM) Z 2 based procedure. 
Detailed description of this widely used" technique, 
together with the source code is given in ref. [10]. 
We have already successfully used the method for 
processing data gained by the flash method [11]. Here 
we give only a brief description of the fitted equation 
and concentrate on the conditions, which must be 
fulfilled for successful use LM in the case of the step- 
heating method. 

Fitting to the etdiabatic model described by equa- 
tion (6) is straightforward and therefore we do not 
pay further attention to it here. However, fitting in 
the case of heat losses from the sample surface gov- 
erned by equation (18) is more complicated. We 
assume the same heat transfer coefficient from the 

front and rear surface h a = h0 = he. The fitted equation 
then has the form 

T(a, B, Ha, Hr, Tzl, t) = Tzl 

W 2 
1 - - e x p ( - - ( ~ 2 2 ' + ~ )  at)  

~t_ g ~ An ~ n m ( 3 1 )  
n = l  m =1 f U  2 W 2 ..~ " 'm 

at,7 ) 
where 

B = ~ (32) 
poe 

A, = a,(cos(u,) + sin(u,)) 

2u, ~ 
a, - (33) 

u 2 + H, 2 + 2Ha 

2Hr 
B,, = (34) 

2 2 Jo (Win) (Wm+ nr ) 

and r and s are the number of summation terms. 
Parameters to be fitted are B, thermal diffusivity a, 
Biot numbers Ha = H0 = He, Hr and a zero level cor- 
rection term Tzj. The last parameter makes the method 
insensitive to a possible shift of the baseline. 

In order to independently estimate all five 
parameters, they must be uncorrelated and their sen- 
sitivity coefficients linearly independent. The sen- 
sitivity coefficients for the case of heat losses are shown 
in Fig. 3. It is evident that a certain correlation 
between Ss, Sna and Snr occurs. To estimate the mea- 
sure of the parameter correlation we used Pearson's 
linear correlation coefficient PLC [10], which lies 
between - 1  and 1. Correlated (anticorrelated) dis- 
tributions yield values close to 1 ( -  1), while uncor- 
related distributions give PLC close to 0. Figure 4 
shows the time dependence of PLC for all com- 
binations of parameters. From the figure we can see 
that the parameters B, Ha and Hr are very strongly 
correlated for the extent of the measurement time, 
while the parameter a shows low correlation with the 
rest of the parameters in a certain time interval. For 
this particular case the optimal interval for deter- 
mination of a is 6-7 s (Fig. 4). 

Fitting to a model with nearly correlated par- 
ameters is not a trivial problem, since the minimum 
has shape of a flat valley, as we show further. Let us 
construct an error function D : 

D(a, B, Ha, Hr) = ~ [T(a, B, Ha, Hr, t,) 
t i 

T(a , B , Ha, Hr, t,)] 2 (35) 

which reflects a deviation of the response with par- 
ameters a, B, Ha and Hr from the curve with optimal 
parameters a*, B*, H* and H*. Two plots of this func- 
tion are shown in Fig. 5. Figure 5(a) shows D(a, B, 
H~*, Hr*) for a and B varying in a close neighbourhood 
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Fig. 4. Pearson's correlation coefficient as a function of measurement time for all the combinations of fitted 
parameters. 

of  the point [a*, B*]. The closed contours show that 
D has the unambiguous minimum in [a*, B*]. The 
case of  D(a*, B*, Ha, HO near the point [H*, H ~  is 
different. The parallel contours of  Fig. 5(b) show that 
there is a continuous line of  minimum points instead 
of  a single one. Since the iteration process can stop at 
each of  these points, depending on the initial guess, 
only the ratio HJH~ can be estimated, i.e. various 
combinations of  Ha and Hr with the same ratio lead 
to the same value of  the thermal diffusivity. The 
advantage of  the LM method is its good behaviour in 
such near-degeneracy cases (where other methods 
may fail), but at the cost of  a tendency to wander 
around the minimum and thus finding the optimal 
parameters is time consuming [10]. 

3.3. Optimization of the LM fittin9 process 
Computat ional  complexity of  the LM method can 

be expressed as O(r's" i'p), where r 's  is number of  
sum terms in equation (31) taken into account, i is 
number of  iterations and p is number of  fitted par- 
ameters. Proper choice of  r and s can significantly 
speed up the iterative process. 

For  the purpose o f  a time analysis of  the problem 

let us express the nmth exponential of  equation (31) 
a s  

exp( )) (36) 

where z.,. = 1/{a[(uZ/e2)+(W2m/r])]} is its time con- 
stant and k.~ = A.B,.r.~.. Table 1 shows k ~  and ~.~ 
for some selected values of  n and m. We see that k.,. 
is falling much faster with growing m than with n (e.g. 
k~,5 < k]00,0 and therefore it is possible to take fewer 
m-members into account. 

Contribution of  each exponential T.m is after some 
time (z ~ 3z.m) constant and equal to A.B,.z.... If  we 
neglect all terms with : < t/s, where t is measurement 
duration and s is number of  samples, the error is 
constant over the whole time interval and results in a 
shift of  the curve. However,  this approximation also 
results in an error in the determination o f  the curve 
parameters. Since the deviation is constant, we can 
improve the precision by fitting the zero level term Tzj 
of  the working equation (equation (31)). Table 2 
shows results of  fitting the models with different num- 
bers of  r and s terms to a simulated noiseless response 

Table 1. z,m and k,m for selected n and m (see equation (36)) 

n ~., [s] k., Is] ~.2 [s] ~.~ Is] ~.~ Is] ~.~ Is] 

I 4.352319 2 .781931 0.132045 --0.002748 0.011237 0.000036 
2 1.071038 - 1.627136 0.120815 0.005976 0.011149 --0.000085 
5 0.108704 0.215835 0.060449 --0.003908 0 . 0 1 0 2 0 8  0.000102 

10 0.022300 -0.045400 0.019162 0.001270 0.007485 -0.000077 
20 0 .005041  -0.010315 0.004861 0.000324 0 .003483 -0.000036 
50 0.000759 -0.001556 0.000755 0.000050 0.000711 -0.000007 

100 0.000186 -0.000381 0.000186 0.000012 0.000183 -0.000002 
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Fig. 5. Isocontours of the D function near point [a*, B*, 
Ha*, ,~/~ (see equation (35)). 

with r = 100 and s = 10. In the third column are 
values of a obtained without fitting the Tzt term, while 
in the fourth column are results obtained with this 
term. We see thai: in the worst case, for r = 30 and 
s = 1, the error of the result is nearly eight times lower 
with fitting of the Tzl term. However, errors increase 

with further decrease of r, since the condit ion z < t/s 
is no longer fulfilled for all discarded exponentials. 

The last column of Table 2 shows durat ion of the 
fitting procedure. We can see that even a 15-fold speed 
up can be reached (30 x 1 vs 100 x 10 terms) without 
a significant lose of precision. 

4. RESULTS AND DISCUSSION 

In the previous sections we have described the mod- 
els used for determination of the thermal diffusivity 
by the step-heating method. Three possible cases are 
discussed. The case when no heat losses from the sam- 
ple surface occur (equation (6)) is straightforward. 
From Fig. 2 we can see that sensitivities for both fitted 
parameters a and B are linearly independent in the 
whole time region. However, the conditions of this 
model are rarely fulfilled in a real experiment. 

The most common case is that of  equal axial and 
radial heat transfer coefficients. The third possibility, 
with different axial and radial heat losses, may occur 
when axial and radial surfaces of a sample are not  of 
the same roughness. 

Sensitivity analysis of equation (18) depicted in Fig. 
3 shows that there is a certain linear dependence of 
the sensitivity coefficients SB, Sn, and S/~. Pearson's 
test [10] confirms a strong correlation of these par- 
ameters. However, the thermal diffusivity is not  cor- 
related with other parameters in a certain time region 
(Fig. 4). 

We have proposed the use of two data reduction 
methods for evaluation of the thermal diffusivity. The 
first is the least-squares fitting algorithm, which can 
be used in the case where heat losses are negligible 
(equation (6)) or for samples with equal axial and 
radial heat transfer coefficients. In this case only two 
linearly independent parameters a and H, are fitted. 
Parameter B is then calculated from equation (24) and 
parameter Hr from the condit ion of equal axial and 
radial heat transfer coefficients. The main advantage 
of this technique is that the calculation of the thermal 
diffusivity is independent of knowledge of the par- 
ameter B. 

As the second method we used the Levenberg-Mar-  
quardt method. Fitted parameters are a, B, Ha, Hr 
and a zero level correction term Tz~, which makes the 
method insensitive to a possible shift of  the baseline. 

Table 2. Fitting noiseless simulated response with different r and s with (ant~0 
and without (afit) the zero level correction term T~. True thermal diffusivity 

a =  5x10-Sm2s -t 

r s ant[10-Sm2s -1] afiul[10 5m2s- l ]  Fittime[s] 

100 10 5.0 5.0 115 
100 2 4.999 4.999 26 
50 10 4.961 4.997 65 
30 1 5.089 5.012 8.5 
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Table 3. Thermal diffusivity and its deviation gained from simulated data by LM method. 
The simulated noise was 0.5%, 1% and 5%, respectively 

Time [s] ao.5o/, [10 -5 m 2 s-i] alo/o [10 -5 m 2 s -l] aso/o [10 -5 m 2 s -l] 

4 5.133 + 0.312 5.327 + 0.680 5.362__+ 0.680 
7 5.028 + 0.160 5.066 _+ 0.220 5.160 _-t- 0.390 

14 5 . 0 8 2 _ _ . 0 . 1 0 3  5 . 1 1 5 _ + 0 . 1 7 3  5.250_+0.377 
20 5.081 +0.105 5.125-+0.173 5.244-+0.326 

Table 4. Thermal diffusivity a of stainless steel and graphite using both LS and 
LM method and compared with literature data 

Sample a . . . . . .  [10 -5 m 2 s-l] aLs [10 -5 m 2 s-l] aLM [10 -5 m 2 s J] 

Graphite 76.6 72.47 _+ 0.11 73.4 _+ 0.04 
Steel 3.77 3.56+0.18 3.66+0.10 

The main advantage of  this procedure is the possibility 
of  fitting to equation (18) with different axial and 
radial heat transfer coefficients. However,  processing 
of such a near-degenerated case with nearly correlated 
parameters B, Ha and Hr (as was shown above) results 
in wandering around the minimum performing tenths 
of  iterations and is very time consuming. The time 
analysis in the previous sections shows how we can 
optimize the number of  sum terms in equation (31) 
and thus reduce the fitting time significantly. 

To test the reliability of  the LM method applied to 
the case with different axial and radial heat losses we 
generated a set of  50 Monte-Carlo  curves with three 
levels of  additive noise and four different measure- 
ment times. Table 3 shows the obtained mean thermal 
diffusivity and its deviation by fitting to the complex 
model  (equation (31)). All the simulations were done 
for the sample parameters mentioned in the previous 
section. F rom Table 3 we see that we get the most 
precise value of  thermal diffusivity by fitting the 
response with a duration of  7 s, i.e. in the region where 
a is not  correlated with other parameters. Thus it is 
evident that the precision of  the fitting process 
depends on the duration of  the measurement. With 
increasing noise the precision of  estimating the ther- 
mal diffusivity decreases. Its standard deviation 
increases even more rapidly as a result of  the flat valley 
of  minimum points depicted in Fig. 5(b). 

The two data reduction algorithms were also tested 
on experimental data obtained from graphite (diam- 
eter 12.8 mm, length 27 mm) and stainless steel (diam- 
eter 12 mm, length 6 mm) samples. The results gained 
from both methods together with the values given by 
NIST [12, 13] are given in Table 4. Al though the 
measurements were done at room temperature, the 
graphite sample exhibits heat losses and the difference 
between the values gained by using the correct model 
and adiabatic model  was approximately 20%. Thus 
for processing the measured data we use the model  
with equal axial and radial heat losses. 

5. CONCLUSION 

The step-heating technique is a suitable tool for 
determining the thermal diffusivity of  materials. It is 
an extension of  the well-known flash method made by 
exchanging the source of  the light pulse (laser, flash 
lamp) for a source of  constant heat flux (halogen 
lamp). In this paper we have outlined use of  two data 
reduction methods for this technique. Both are based 
on a non-linear fitting to the equation which involves 
heat loss terms. The sensitivity analysis shows that the 
duration of  measurement can increase the precision 
of  the results of  data reduction. The proposed fitting 
algorithms were tested on both simulated and exper- 
imental data and the analysis above shows that they 
can be successfully used to process data gained by the 
step-heating technique. 

REFERENCES 

1. R. R. Bittle and R. E. Taylor, Step-heating technique 
for thermal diffusivity measurements of large-grained 
heterogeneous materials, J. Am. Ceram. Soc. 67, 186- 
190 (1984). 

2. R. R. Bittle and R. E. Taylor, Thermal diffusivity of 
heterogeneous materials and non-fibrous insulators, in 
Thermal Conductivity (Edited by T. Ashworth and D. R. 
Smith), Vol. 18, pp. 379-390. Plenum, New York (1985). 

3. W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. 
Abbott, Flash method of determining thermal diffu- 
sivity, heat capacity and thermal conductivity, J. Appl. 
Phys. 32, 1679-1684 (1961). 

4. R. M. Pujola and D. L. Balageas, Derniers d6velop- 
pements de la m6thode flash adapt6e aux mat6riaux com- 
posites a renforcement orient6, High Temp. High Press. 
17, 623~32 (1985). 

5. D. L. Balageas and A. M. Luc, Transient thermal 
behavior of directional reinforced composites: appli- 
cability limits of homogeneous property model, AIAA J. 
24, 109-114 (1986). 

6. H. S. Carslaw and J. C. Jaeger, Conduction o f  Heat in 
Solids, 2nd edn, p. 112. Oxford University Press, Oxford 
(1959). 

7. D. A. Watt, Theory of thermal diffusivity by pulse tech- 
nique, Br. Jr. Appl. Phys. 17, 231-240 (1966). 



Evaluation of thermal diffusivity 1655 

8. J. V. Beck and K. J. Arnold, Parameter Estimation in 
Engineering and Science, p. 349. Wiley, New York 
(1977). 

9. L. Voz~r, Sensitivity analysis of thermal diffusivity 
measurement by 1:he flash method, Proc. of  the 9th Int. 
Conf. on Thermal Engineering and Thermogrammetry-- 
THERMO, Budapest, pp. 91-95. MATE (1995). 

10. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. 
Vetterling, Numerical Recipes in C. Cambridge Uni- 
versity Press, Cambridge (1988). 

11. T. Srfimkovfi and T. Log, Using of non-linear •2 fit in 

12. 

13. 

flash method, Int. J. Heat Mass Transfer 38, 2885--2891 
(1995). 
J. G. Hust and A. B. Lankford, A fine-grained, isotropic 
graphite for use as NBS thermophysical property RM's 
from 5 to 2500 K. National Bureau of Standards, Special 
Publication, pp. 260-289 (1984). 
J. G. Hust and A. B. Lankford, Austenitic stainless steel 
thermal conductivity and electrical resistivity as a func- 
tion of temperature from 5 to 2500 K. National Bureau 
of Standards, Certificate Standard Reference Materials 
1460, 1461, and 1462, Washington DC (1984). 


